Cohomogeneity One Actions on Some Noncompact Symmetric Spaces of Rank Two
ثبت نشده
چکیده
We classify, up to orbit equivalence, the cohomogeneity one actions on the noncompact Riemannian symmetric spaces G2 /G2, SL3(C)/SU3 and SO 2,n+2/SO2SOn+2, n ≥ 1.
منابع مشابه
Cohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One
We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...
متن کامل2 4 M ay 2 00 5 Cohomogeneity one actions on noncompact symmetric spaces of rank one
We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CH, n ≥ 3. For the quaternionic hyperbolic spaces HH, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificatio...
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملHyperpolar Homogeneous Foliations on Noncompact Symmetric Spaces
We introduce examples of hyperpolar actions on noncompact symmetric spaces that induce a regular foliation. We study some properties of these actions. Finally, we show that any hyperpolar action on a noncompact symmetric space that induces a regular foliation is one of these examples.
متن کاملOn the Geometry of Cohomogeneity One Manifolds with Positive Curvature
There are very few known examples of manifolds with positive sectional curvature. Apart from the compact rank one symmetric spaces, they exist only in dimensions 24 and below and are all obtained as quotients of a compact Lie group equipped with a biinvariant metric under an isometric group action. They consist of certain homogeneous spaces in dimensions 6, 7, 12, 13 and 24 due to Berger [Be], ...
متن کامل